染色赋值法是什么
2024-07-17 20:50:35作者:饭克斯
我也是在网上无意看到的,希望这些对你有用第12讲染色和赋值染色方法和赋值方法是解答数学竞赛问题的两种常用的方法。就其本质而言,染色方法是一种对题目所研究的对象进行分类的一种形象化的方法。而凡是能用染色方法来解的题,一般地都可以用赋值方法来解,只需将染成某一种颜色的对象换成赋于其某一数值就行了。赋值方法的适用范围要更广泛一些,我们可将题目所研究的对象赋于适当的数值,然后利用这些数值的大小、正负、奇偶以及相互之间运算结果等来进行推证。
一、 染色法将问题中的对象适当进行染色,有利于我们观察、分析对象之间的关系。像国际象棋的棋盘那样,我们可以把被研究的对象染上不同的颜色,许多隐藏的关系会变得明朗,再通过对染色图形的处理达到对原问题的解决,这种解题方法称为染色法。常见的染色方式有:点染色、线段染色、小方格染色和对区域染色。例1用15个“T”字形纸片和1个“田”字形纸片(如下图所示),能否覆盖一个8×8的棋盘?解:如下图,将8×8的棋盘染成黑白相间的形状。如果15个“T”字形纸片和1个“田”字形纸片能够覆盖一个8×8的棋盘,那么它们覆盖住的白格数和黑格数都应该是32个,但是每个“T”字形纸片只能覆盖1个或3个白格,而1和3都是奇数,因此15个“T”字形纸片覆盖的白格数是一个奇数;又每个“田”字形纸片一定覆盖2个白格,从而15个“T”字形纸片与1个“田”字形纸片所覆盖的白格数是奇数,这与32是偶数矛盾,因此用它们不能覆盖整个棋盘。例2如左下图,把正方体分割成27个相等的小正方体,在中心的那个小正方体中有一只甲虫,甲虫能从每个小正方体走到与这个正方体相邻的6个小正方体中的任何一个中去。如果要求甲虫只能走到每个小正方体一次,那么甲虫能走遍所有的正方体吗?解:甲虫不能走遍所有的正方体。我们如右上图将正方体分割成27个小正方体,涂上黑白相间的两种颜色,使得中心的小正方体染成白色,再使两个相邻的小正方体染上不同的颜色。显然在27个小正方体中,14个是黑的,13个是白的。甲虫从中间的白色小正方体出发,每走一步,方格就改变一种颜色。故它走27步,应该经过14个白色的小正方体、13个黑色的小正方体。因此在27步中至少有一个小正方体,甲虫进去过两次。由此可见如果要求甲虫到每一个小正方体只去一次,那么甲虫不能走遍所有的小正方体。例38×8的国际象棋棋盘能不能被剪成7个2×2的正方形和9个4×1的长方形?如果可以,请给出一种剪法;如果不行,请说明理由。解:如下图,对8×8的棋盘染色,则每一个4×1的长方形能盖住2白2黑小方格,每一个2×2的正方形能盖住1白3黑或3白1黑小方格。推知7个正方形盖住的黑格总数是一个奇数,但图中的黑格数为32,是一个偶数,故这种剪法是不存在的。例4在平面上有一个27×27的方格棋盘,在棋盘的正中间摆好81枚棋子,它们被摆成一个9×9的正方形。按下面的规则进行游戏:每一枚棋子都可沿水平方向或竖直方向越过相邻的棋子,放进紧挨着这枚棋子的空格中,并把越过的这枚棋子取出来。问:是否存在一种走法,使棋盘上最后恰好剩下一枚棋子?解:如下图,将整个棋盘的每一格都分别染上红、白、黑三种颜色,这种染色方式将棋盘按颜色分成了三个部分。按照游戏规则,每走一步,有两部分中的棋子数各减少了一个,而第三部分的棋子数增加了一个。这表明每走一步,每个部分的棋子数的奇偶性都要改变。因为一开始时,81个棋子摆成一个9×9的正方形,显然三个部分的棋子数是相同的,故每走一步,三部分中的棋子数的奇偶性是一致的。如果在走了若干步以后,棋盘上恰好剩下一枚棋子,则两部分上的棋子数为偶数,而另一部分的棋子数为奇数,这种结局是不可能的,即不存在一种走法,使棋盘上最后恰好剩下一枚棋子。例5图1是由数字0,1交替构成的,图2是由图1中任选减1,如此反复多次形成的。问:图2中的A格上的数字是多少?解:如左下图所示,将8×8方格黑白交替地染色。此题允许右上图所示的6个操作,这6个操作无论实行在哪个位置上,白格中的数字之和减去黑格中的数字之和总是常数。所以图1中白格中的数字之和减去黑格中的数字之和,与图2中白格中的数字之和减去黑格中的数字之和相等,都等于32,由