大家知到月球的那些信息

2024-07-16 03:48:49作者:饭克斯

分类:教育/科学>>科学技术

解析:

月球或月亮是指环绕地球运行的一颗卫星。它是目前人类已知的唯一一颗地球天然卫星和离地球最近的天体。俗称月亮也称太阴。天文学上用来代替月球。

目录[隐藏]

1概述

2月球的两面

3轨道

3.1公转轨道

3.2偏心率变化

3.3拱线运动

3.4轨道倾角变化

3.5交点西退

3.6中心差

3.7天秤动

3.7.1物理天秤动

4月球的起源

5特征

5.1成分

5.2表面地理

5.3水的存在

5.4磁场

5.5大气

6月食

7月球与日食

8月球的观察

9月球的探索

10人类对月球的理解

10.1神话与民俗

10.2占星术

11外部链接

11.1科学理解

[编辑]概述

月球与地球之间的平均距离是384,400千米。

1969年尼尔·阿姆斯特朗/阿姆斯壮/杭斯朗(NeilArmstrong)和奥尔德林(BuzzAldrin)成为最先登陆月球的人类。

[编辑]月球的两面

月球是一颗同转卫星,月球的正面永远向着地球。另一方面除了在月面边沿附近的区域因天秤动而间中可见以外,月球的背面绝大部分不能从地球看见。在没有太空探测器的年代,月球的背面一直是个未知的世界。

月球背面的一大特色是它几乎没有月海这种较暗的月面特征。而当探测器运行至月球背面时,它将无法与地球直接通讯。

[编辑]轨道

月球约一个农历月绕地球运行一周,而每小时相对背景星空移动半度,即与月面的视直径相若。与其他卫星不同,月球的轨道平面较接近黄道面,而不是在地球的赤道面附近。

相对于背景星空,月球围绕地球运行(月球公转)一周所需时间称为一个恒星月;而新月与下一个新月(或两个相同月相之间)所需的时间称为一个朔望月。朔望月较恒星月长是因为地球在月球运行期间,本身也在绕日的轨道上前进了一段距离。

因为月球的自转周期和它的公转周期是完全一样的,我们只能看见月球永远用同一面向着地球。自月球形成早期,月球便一直受到一个力矩的影响引致自转速度减慢,这个过程称为潮汐锁定。亦因此部分地球自转的角动量转变为月球绕地公转的角动量,其结果是月球以每年约38毫米的速度远离地球。同时地球的自转越来越慢,一天的长度每年变长15微秒。

月球对地球所施的引力是潮汐现象的起因之一。

[编辑]公转轨道

球和地球是一对伴侣,组成地月系,共同围绕著公共质心运转不息,地月系质心离地心约4.671公里,因此环绕质心与环绕地心的椭圆轨道相差不大。月球在环绕地球作椭圆运动的同时也伴随地球围绕太阳公转,每年一周。月球不但处于地球引力作用下,同时也受到来自太阳引力的影响,所以具有十分复杂的轨道运动。其中主要的轨道变化有:偏心率变化、轨道倾角变化、拱线运动、交点西退、中心差。

[编辑]偏心率变化

月球轨道偏心率变化在1/15到1/23的范围内,偏心率的平均值为0.0549,接近1/18。

严格来说地球与月球围绕共同质心运转,共同质心距地心4700千米(即地球半径的2/3处)。由于共同质心在地球表面以下,地球围绕共同质心的运动好像是在“晃动”一般。从地球北极上空观看,地球和月球均以迎时针方向自转;而且月球也是以迎时针绕地运行;甚至地球也是以迎时针绕日公转的。

很多人不明白为甚么月球轨道倾角和月球自转轴倾角的数值会有这么大的变化。其实轨道倾角是相对于中心天体(即地球)而言的,而自转轴倾角则相对于卫星(即月球)本身的轨道面。在这个定义习惯很适合一般情况(例如人造卫星的轨道)而且是数值相当固定的,但月球却非如此。

[编辑]拱线运动

月球围绕地球的椭圆轨道,在它自己的平面上也不是固定的,其椭圆的拱线(近地点和远地点的连线)沿月球公转方向向前移动,每8.85年移动一周。中国早在汉代,贾逵就提出月球视运动的最疾点每九年运动一周,这实际上正是拱线运动的结果。

[编辑]轨道倾角变化

月球轨道(白道)对地球轨道(黄道)的倾角变化在4°57~5°19之间,平均值为5°09。

月球的轨道平面(白道面)与黄道面(地球的公转轨道平面)保持着5.145396°的夹角,而月球自转轴则与黄道面的法线成1.5424°的夹角。因为地球并非完美球形,而是在赤道较为隆起,因此白道面在不断进动(即与黄道的交点在顺时针转动),每6793.5天(18.5966年)完成一周。期间白道面相对于地球赤道面(地球赤道面以23.45°倾斜于黄道面)的夹角会由28.60°(即23.45°+5.15°)至18.30°(即23.45°-5.15°)之间变化。同样地月球自转轴与白道面的夹角亦会介乎6.69°(即5.15°+1.54°)及3.60°(即5.15°-1.54°)。月球轨道这些变化又会反过来影响地球自转轴的倾角,使它出现±0.00256°的摆动,称为章动。

[编辑]交点西退

白道与黄道的交线,其空间位置并不固定,而是不断地向西运动,每18.6年运行一周。这一现象早在东汉末年就为刘洪发现,并用于月食预报计算中。

白道面与黄道面的两个交点称为月交点--其中升交点(北点)指月球通过该点往黄道面以北;降交点(南点)则指月球通过该点往黄道以南。当新月刚好在月交点上时,便会发生日食;而当满月刚好在月交点上时,便会发生月食。

[编辑]中心差

由于月球轨道是椭圆而不是圆形,月球公转速度并不均匀。月球运动同均匀的圆周运动比较,时而超前,时而落后,其半振幅为6°.29,周期为27.55455日。

[编辑]天秤动

详见天秤动

由于月球轨道为椭圆形,当月球处于近日点时,它的自转速度便追不上公转速度,因此我们可见月面东部达东经98度的地区,相反,当月处于远日点时,自转速度比公转速度快,因此我们可见月面西部达西经98度的地区。这种现象称为经天秤动。又由于月球的自转轴倾斜于公转轨道平面(白道面),而白道与黄道又有约5度的交角,因此月球绕地球公转一周时,极区会作约7度的晃动,这种现象称为纬天秤动。再者由于月球距离地球只有60地球半径之遥,若观测者从月出观测至月落,观测点便有了一个地球直径的位移,可多见月面经度1度的地区。这种现象称为周日天秤动。

[编辑]物理天秤动

月球由于三条主惯性轴长度不等,在地球引力作用下,发生对平均位置的偏移。与几何天平动不同,它是真实的摆动。物理天平动比几何天平动小得多(见物理天秤动)。由于这两种天平动,从地面观测,不止看到月球的半面,而且能看到月球的59%,其余41%则不能直接看到。

月球的周期名称数值(d)定义

恒星月27.321661相对于背景恒星

朔望月29.530588相对于太阳(月相)

分点月27.321582相对于春分点

近点月27.554550相对于近地点

交点月27.212220相对于升交点

月球轨道的其它特征名称数值(d)定义

默冬章(repeatphase/day)19年

平均月地距离~384400千米

近地点距离~364397千米

远地点距离~406731千米

轨道平均偏心率0.0549003

交点退行周期18.61年

近地点运动周期8.85年

食年346.6天

沙罗周期(repeateclipses)18年10/11天

轨道与黄道的平均倾角5°9'

月球赤道与黄道的平均倾角1°32'

[编辑]月球的起源

月球的起源问题非常古老,也是科学界争论不休的题目。

月球的形成有以下几个观点。

一.分裂说。这是最早解释月球起源的一种假设。早在1898年,著名生物学家达尔文的儿子乔治·达尔文就在《太阳系中的潮汐和类似效应》一文中指出,月球本来是地球的一部分,后来由于地球转速太快,把地球上一部分物质抛了出去,这些物质脱离地球后形成了月球,而遗留在地球上的大坑,就是现在的太平洋。这一观点很快就收到了一些人的反对。他们认为以地球的自转速度是无法将那样大的一块东西抛出去的。再说如果月球是地球抛出去的,那麽二者的物质成分就应该是一致的。可是通过对“阿波罗12号”飞船从月球上带回来的岩石样本进行化验分析,发现二者相差非常远。

二.俘获说。这种假设认为,月球本来只是太阳系中的一颗小行星,有一次,因为运行到地球附近,被地球的引力所俘获,从此再也没有离开过地球。还有一种接近俘获说的观点认为,地球不断把进入自己轨道的物质吸积到一起,久而久之,吸积的东西越来越多,最终形成了月球。但也有人指出,向月球这样大的星球,地球恐怕没有那麽大的力量能将它俘获。

三.同源说。这一假设认为,地球和月球都是太阳系中浮动的星云,经过旋转和吸积,同时形成星体。在吸积过程中,地球比月球相应要快一点,成为“哥哥”。这一假设也受到了客观存在的挑战。通过对“阿波罗12号”飞船从月球上带回来的岩石样本进行化验分析,人们发现月球要比地球古老得多。有人认为月球年龄至少应在70亿年左右。

四.大碰撞说。这是近年来关于月球成因的新假设。1986年3月20日,在休士顿约翰逊空间中心召开的月亮和行星讨论会上,美国洛斯阿拉莫斯国家实验室的本兹、斯莱特里和哈佛大学史密斯天体物理中心的卡梅伦共同提出了大碰撞假设。这一假设认为,太阳系演化早期,在星际空间曾形成大量的“星子”,星子通过互相碰撞、吸积而长大。星子合并形成一个原始地球,同时也形成了一个相当于地球质量0.14倍的天体。这两个天体在各自演化过程中,分别形成了以铁为主的金属核和由硅酸盐构成的幔和壳。由于这两个天体相距不远,因此相遇的机会就很大。一次偶然的机会,那个小的天体以每秒5千米左右的速度撞向地球。剧烈的碰撞不仅改变了地球的运动状态,使地轴倾斜,而且还使那个小的天体被撞击破裂,硅酸盐壳和幔受热蒸发,膨胀的气体以及大的速度携带大量粉碎了的尘埃飞离地球。这些飞离地球的物质,主要有碰撞体的幔组成,也有少部分地球上的物质,比例大致为0.85:0.15。在撞击体破裂时与幔分离的金属核,因受膨胀飞离的气体所阻而减速,大约在4小时内被吸积到地球上。飞离地球的气体和尘埃,并没有完全脱离地球的引力控制,他们通过相互吸积而结合起来,形成全部熔融的月球,或者是先形成几个分离的小月球,在逐渐吸积形成一个部分熔融的大月球。

[编辑]特征

[编辑]成分

45亿年前,月球表面仍然是液体岩浆海洋。科学家认为组成月球的矿物克里普矿物(KREEP)展现了岩浆海洋留下的化学线索。KREEP实际上是科学家称为“不兼容元素”的合成物--那些无法进入晶体结构的物质被留下,并浮到岩浆的表面。对研究人员来说KREEP是个方便的线索,来明暸月壳的火山运动历史,并可推测彗星或其他天体撞击的频率和时间。

月壳由多种主要元素组成,包括:铀、钍、钾、氧、硅、镁、铁、钛、钙、铝及氢。当受到宇宙射线轰击时,每种元素会发射特定的伽玛辐射。有些元素例如:铀、钍和钾,本身已具放射性,因此能自行发射伽玛射线。但无论成因为何,每种元素发出的伽玛射线均不相同,每种均有独特的谱线特征,而且可用光谱仪测量。

直至现在人类仍未对月球元素的丰度作出面性的测量。现时太空船的测量只限于月面一部分。例如:1992年伽利略号曾于飞掠月球时测量过元素丰度。[2]

[编辑]表面地理

月球形状是南北极稍扁、赤道稍许隆起的扁球。它的平均极半径比赤道半径短500米。南北极区也不对称,北极区隆起,南极区洼陷约400米。但在一般计算中仍可把月球当作三轴椭圆体看待。物理天平动的研究有助于解决月球形状问题。通过天平动研究还表明,月球重心和几何中心并不重合,重心偏向地球2公里。这一结论已为阿波罗登月获得的资料所证实。

月球表面有上万个直径超过1千米的环形山.他们大部分都有上亿年的历史;缺少大气层和气象活动以及缺乏近期地质活动保证了它们大部分永久性的保持原样.

SouthPole-Aitkenbasin为月球上也是太阳系内已知最大的环形山。这环形山位于月球的背面,接近南极的地方,直径约2,240公里,深13公里。

那些暗色和较少特征的月球平原叫“月海”,这是由于古代的天文学家认为上面是海洋的缘故。事实上月海由巨大陨石撞击后从月幔流出并覆盖表面的玄武岩岩浆形成。较浅色的高地叫“月陆”。几乎只有面向地球的月面才有月海,月球背面的月海寥寥可数。天文学家相信这是因为月球的质心比形心更靠近地球所导致的(详请参见月海)。

在月壳上是一层表面呈尘埃状的岩石层,称为月壤,月壤并不是土壤。月壳和月壤在月面的分布并不均匀。月壳的厚度由60公里(月球正面)至100公里(月球背面)不等,月壤则由约5米(月海)至十多米(月陆)。

在2004年,JohnsHopkinsUniversity的BenBussey博士率领的小组从克莱门汀任务拍摄得来的照片中,发现月球北极Pearycrater边沿的4个区域经常受到日照(南极却没有发现类似区域)。这些终年日照区的产生是由于月球的自转轴倾角很小,同样道理,有很多位于两极的陨石坑底经常没有光照。

[编辑]水的存在

自古以来彗星和陨星不断地撞击月球。这些物体中的大部分都含有水分。来自阳光的能量将这些大部分的水分分解回组成它的元素,氢和氧。两者通常都会立即飞离月球。但是有科学家提出假说,认为还有相当含量的水在月球之上,例如在表面或深藏在月壳里。美国克莱门汀任务显示,一些细小的水冰冰块(含水彗星撞击后的碎片)可能藏在永久无日照区域的月壳里未被融化。虽然这些冰块很小,但总水量却可能相当可观(约有1立方公里)

而有些水分子,亦可能在月面弹跳其间掉进陨石坑而藏于其中。由于月球自转轴相对于黄道面法线有1.5度的轻微倾斜,部分极区的陨石坑底部从来没有受阳光照射,处于永久的影子中。克莱门汀任务曾测量月球南极这些陨石坑([3])并绘制成地图([4])。科学家期望可在此类陨石坑中找到水冰,并开采及利用太阳能电力或核能来电解成氢和氧。月球上可用的水量大大影响了人类在月球上居住的成本,因为从地球运送水(或氢和氧)昂贵得不切实际。

由阿波罗号上的太空人在月球赤道附近收集的岩石并不含任何水分。月球勘探者号或其他近期研究(例如:史密森学会)均没有找到液态水、冰或水蒸汽的直接证据。但是月球勘探者号的结果指出在永久无日照区有氢,并可能以水冰的形式存在。

[编辑]磁场

与地球相比月球的磁场非常弱.部分地区上的磁场相信是来自月球本身的(例如在Sirsalis月溪上的月壳),但与其他天体碰撞亦可能令它的磁场改变。而无大气层的天体是否能透过彗星和小行星撞击而获得磁场,是行星科学里一个历久常新的问题。测量月球磁场更可提供月核大小及导电率等资料,对科学家暸解月球起源有很大帮助。若月核比地球含有较多磁性物质(例如:铁),则月球的撞击起源说便较不可信(不过科学家已从另外一些角度来解释为甚么月核含较小的铁)

[编辑]大气

月球只有微不足道稀薄的大气.这些大气的来源之一是除气作用—气体的释放,例如月球表面的氡气原先就是深藏于月球内部的.有时,太阳风也会被月球的引力掳获,成为气体的另一重要来源。

[编辑]月食

参见主要条目:月食

月全食月食是一种特殊的天文现象,指当月球运行至地球的阴影部份时,在月球和地球之间的地区会因为太阳光被地球所遮闭,现看到月球缺了一块。

也就是说此时的太阳、地球、月球恰好(或几乎)在同一条直在线,因此从太阳照射到月球的光线,会被地球所掩盖。

[编辑]月球与日食

机缘巧合现时从地球观看月球和太阳的平均视直径几乎一样,两者视觉上重叠时,更有时会出现日全食,有时会出现日环食。在日全食时月球完全遮盖了日面,使我们可以肉眼看见日冕。

因为地月距离在逐渐增加,月球的视直径正在不断减小。在数百万年前,月球总是能够完全遮盖太阳,故此当时不会出现日环食。同样道理数百万年后,月球将不足以遮盖整个日面造成日全食。

只有在太阳、地球、月球三者连成直线才会出现“食”。日食只会发生在“新月”(朔);月食只会发生在“满月”(望)。

参看:日食和月食

[编辑]月球的观察

参见月相条目

当月球(和太阳)靠近地平线时看来较大。这纯粹是心理作用。事实上大气折射使接近地平线的月球的影像变扁,视面积反而略为减少。有人认为人类的视觉在进化时不偏重测量头顶物体,故此造成这种错觉。[5]从地球观看,月球的视直径大约是半度。

每个民族对月面上光暗不同的区域(主要是月海)都有不同的想像。例如:嫦娥、玉兔、螃蟹等。另外环形山和山脉也是月面上明显的地貌。

在满月期间月球的视亮度约有-12.6等(作为参考,太阳的视亮度为-26.8等。)

月球在夜间最容易察觉得到,但它有时也可在日间看见。(例如上弦月可于下午看见,下弦月可于早上看见。)

月球大约每天推迟50分钟从东方升起。

[编辑]月球的探索

美国宇航员巴兹·奥尔德林在月球上,照片由尼尔·阿姆斯特朗拍摄第一件到达月球的人造物体是前苏联的无人登陆器月球2号,它于1959年9月14日撞向月面。月球3号在同年10月7日拍摄了月球背面的照片。月球9号则是第一艘在月球软著陆的登陆器,它于1966年2月3日传回由月面上拍摄的照片。另外月球10号于1966年3月31日成功入轨,成为月球第一颗人造卫星。

在冷战期间美国和前苏联一直希望在太空科技领先对方。这场太空竞赛在1969年7月20日第一名人类登陆月球时进入***。美国阿波罗11号的指令长尼尔·阿姆斯特朗是踏足月球的第一人,而尤金·塞尔南则是最后一个站立在月球上的人,他是1972年12月阿波罗17号任务的成员。参看:阿波罗宇航员列表

阿波罗11号的太空人留下了一块9英吋乘7英吋的不锈钢牌匾在月球表面,以纪念这次登陆及为有可能发现它的其他生物提供一些资料。牌匾上的文字为:

HeremenfromthePlaEarthfirstsetfootuponthemoon,July1969,A.D.

Wecameinpeaceforallmankind

译作:

公元1969年7月,从行星地球而来的人类在此首次踏足月球

我们为了全人类,和平而来

牌匾上绘有地球的两面,并有三名太空人及当时美国总统尼克逊的签署。

直至现在还经常有人声称美国的登月计划根本是虚构的,所谓登月照片是在荷里活片场里拍摄的,并指出在照片中不少的“破绽”[6]。但尚未有研究过月球样本的科学家怀疑过这些样本的真伪。(参见阴谋论)

6次的太阳神任务及3次无人月球号任务(月球16、20、24号)把月球上的岩石及土壤样本带回地球。

2004年2月,美国总统乔治·沃克·布什提出于2020年前派人重新登月。

欧洲航天局的智能1号探测器于2003年9月27日升空,并于2004年11月15日进入绕月轨道。它勘察月球环境及制作月面X射线地图。[7][8]2006年9月3日格林尼治时间5时42分22秒,智能1号按预定计划击中月球表面。[9]

中国亦积极开展探月计划嫦娥工程,并寻求开采月球资源的可行性,尤其是氦同位素氦-3这种有望成为未来地球能源的元素。[10]

日本已初步订出未来探月的任务。见月球-A[11]及Selene[12]。日本的宇宙航空研究开发机构甚至已着手计划的有人的月球基地。

印度则会先发射无人绕月探测器Chandrayan。2006年5月9日,印度空间研究组织和美国宇航局签署谅解备忘录,合作进行月球探测。印度的无人驾驶月球探测器“月船1号”将搭载两台来自美国宇航局的仪器设备,其中1台是小型合成孔径雷达,用来探测月球两极地区是否存在水源,另外1台是月球矿物绘图仪,用于了解月球表面矿物的分布。[13]

展开全文

相关攻略