matlab遗传算法
2024-07-19 10:40:36作者:饭克斯
functionm_main()
clear
clc
Max_gen=100;%运行代数
pop_size=100;%种群大小
chromsome=10;%染色体的长度
pc=0.9;%交叉概率
pm=0.25;%变异概率
gen=0;%统计代数
%初始化
init=40*rand(pop_size,chromsome)-20;
pop=init;
fit=obj_fitness(pop);
[max_fit,index_max]=max(fit);maxfit=max_fit;
[min_fit,index_min]=min(fit);best_indiv=pop(index_max,:);
%迭代操作
whilegen<Max_gen
gen=gen+1;bt(gen)=max_fit;
ifmaxfit<max_fit;maxfit=max_fit;pop(index_min,:)=pop(index_max,:);best_indiv=pop(index_max,:);end
best_indiv_tmp(gen)=pop(index_max);
newpop=ga(pop,pc,pm,chromsome,fit);
fit=obj_fitness(newpop);
[max_fit,index_max]=max(fit);
[min_fit,index_min]=min(fit);
pop=newpop;
trace(1,gen)=max_fit;
trace(2,gen)=sum(fit)./length(fit);
end
%运行结果
[f_maxgen_ct]=max(bt)%求的最大值以及代数
maxfit
best_indiv
%画图
%bt
holdon
plot(trace(1,:),'.g:');
plot(trace(2,:),'.r-');
title('实验结果图')
xlabel('迭代次数/代'),ylabel('最佳适应度(最大值)');%坐标标注
plot(gen_ct-1,0:0.1:f_max+1,'c-');%画出最大值
text(gen_ct,f_max+1,'最大值')
holdoff
function[fitness]=obj_fitness(pop)
%适应度计算函数
[rc]=size(pop);
x=pop;
fitness=zeros(r,1);
fori=1:r
forj=1:c
fitness(i,1)=fitness(i,1)+sin(sqrt(abs(40*x(i))))+1-abs(x(i))/20.0;
end
end
functionnewpop=ga(pop,pc,pm,chromsome,fit);
pop_size=size(pop,1);
%轮盘赌选择
ps=fit/sum(fit);
pscum=cumsum(ps);%size(pscum)
r=rand(1,pop_size);qw=pscum*ones(1,pop_size);
selected=sum(pscum*ones(1,pop_size)<ones(pop_size,1)*r)+1;
newpop=pop(selected,:);
%交叉
ifpop_size/2~=0
pop_size=pop_size-1;
end
fori=1:2:pop_size-1
whilepc>rand
c_pt=round(8*rand+1);
pop_tp1=newpop(i,:);pop_tp2=newpop(i+1,:);
newpop(i+1,1:c_pt)=pop_tp1(1,1:c_pt);
newpop(i,c_pt+1:chromsome)=pop_tp2(1,c_pt+1:chromsome);
end
end
%变异
fori=1:pop_size
ifpm>rand
m_pt=1+round(9*rand);
newpop(i,m_pt)=40*rand-20;
end
end