爱因斯坦的故事20字

2024-07-18 21:32:17作者:饭克斯

爱因斯坦的故事20字爱因斯坦小时候并不活泼,三岁多还不会讲话,父母很担心他是哑巴,曾带他去给医生检查。还好小爱因斯坦不是哑巴,可是直到九岁时讲话还不很通畅,所讲的每一句话都必须经过吃力但认真地思考。

爱因斯坦的故事150字?几千年前,民间流行着一个故事,一个关于蜜蜂的故事……在一个春日融融的早上,百花争妍,蜜蜂们忙的手脚不能停歇,而一些小蜜蜂呢,他们在温暖的窝里学习。有一只正在读大学的蜜蜂,它认为蜜蜂不一定采蜜,于是它一天决定要去外边的世界走一趟,它内心那一团火正在熊熊燃烧,用水也灭不了。第二天太阳公公缓缓的从东边的海平线升起,阳光照红了半边天,这时它踩懒洋洋的起床,准备今天的奇妙旅行。它好不容易才收拾好行李。它挥挥翅膀一跃,向窗外的世界飞去——“哇——哟呵——哇——”一阵阵惊叹声从它的口中传出。因为外面的世界太精彩,无不以他惊叹。他飞到一些民居附近,看见人与狗玩。小狗跳来跳去,一点也不像他那样飞,它觉得很有趣,也是飞过去逗它,“嘿嘿……”那人看见了它,叫他飞到人的手板上,用指头抚摸著蜜蜂,“可爱的小东西,饿了吧?”然后捏了点饼干碎给它,这是他觉得人很和蔼。时间总会过去的,它回到了窝中,心中的那一团伙再次燃起,我要为人类服务,苦一点没关系!”这下你知道蜜蜂为什么这么辛勤的为人民服务了吧?

爱因斯坦的故事50字爱因斯坦小时候并不活泼,三岁多还不会讲话,父母很担心他是哑巴,曾带他去给医生检查。还好小爱因斯坦不是哑巴,可是直到九岁时讲话还不很通畅,所讲的每一句话都必须经过吃力但认真地思考。童年:在妹妹头上敲了个窟窿爱因斯坦1879年3月14日出世时,有一个大得出奇而且有棱角的后脑勺,母亲以为是个畸形婴儿。两岁半了还不会说话。一天家里来了一个骑脚踏车的小妹妹,他说出了一句完整的话:是的,可是她的小轮子究竟在哪里呢?5岁时脾气狂躁,把家庭教师吓跑了,还用儿童锄头在妹妹头上敲了一个“大窟窿”。爱因斯坦逃学记1895年春天,爱因斯坦已16岁了。根据德国当时的法律,男孩只有在17岁以前离开德国才可以不必回来服兵役。由于对军国主义深恶痛绝,加之独自一人呆在军营般的路易波尔德中学已忍无可忍,爱因斯坦没有同父母商量就私自决定离开德国,去义大利与父母团聚。但是半途退学,将来拿不到文凭怎么办呢?一向忠厚、单纯的爱因斯坦,情急之中竟想出一个自以为不错的点子。他请数学老师给他开了张证明,说他数学成绩优异,早达到大学水平。又从一个熟悉的医生那里弄来一张病假证明,说他神经衰弱,需要回家静养。爱因斯坦以为有这两个证明,就可逃出这厌恶的地方。谁知他还没提出申请,训导主任却把他叫了去,以他败坏班风,不守校纪的理由勒令退学。爱因斯坦脸红了,不管什么原因,只要能离开这所中学,他都心甘情愿,也顾不得什么了。他只是为自己想出一个并未实施的狡猾的点子突然感到内疚,后来每提及此事,爱因斯坦都内疚不已。大概这种事情与他坦率、真诚的个性相去太远.

四、五岁时,爱因斯坦有一次卧病在床,父亲送给他一个罗盘。当他发现指南针不断地指著固定的方向时,感到非常惊奇,觉得一定有什么东西深深地隐藏在这现象后面。他一连几天很高兴的玩这罗盘,还纠缠着父亲和雅各布叔叔问了一连串问题。尽管他连“磁”这个词都说不好,但他却顽固地想要知道指南针为什么能指南。这种深刻和持久的印象,爱因斯坦直到六十七岁还能鲜明的回忆出来爱因斯坦的故事——一件旧大衣一天,爱因斯坦在纽约的街道上遇见一位朋友。“爱因斯坦先生,”这位朋友说,“你似乎有必要要添置一件新大衣了。瞧你身上这件多旧啊!”“这有什么关系?反正在纽约谁也不认识我。”爱因斯坦无所谓地说。几年后他们又偶然相遇。这时爱因斯坦已经誉满天下,却还是穿着那件旧大衣。他的朋友又建议他去买一件新大衣。“这又何必呢?”爱因斯坦说,“反正这儿已经每个人都认识我了。”

爱因斯坦的故事200字爱因斯坦的故事爱因斯坦小的时候,有一次上手工课,他决定制作一个小木凳。下课铃响了同学们都争先恐后的向老师交上了自己的手工作品,而爱因斯坦交给老师的是一个制作的很粗陋的小木凳。老师看了爱因斯坦一眼,生气的挖苦道:“我想,世界上不会有比这更坏的凳子了。”爱因斯坦的脸变得红红的,但他却坚定的对老师说:“有,老师。有的还有比这更坏的凳子。”说完,他走回自己的座位,丛书桌下拿出了两个更为粗陋的小木板凳。

爱因斯坦小时候十分贪玩。母亲再三告诫他:“不能再这样下去了。”爱因斯坦总是不以然地回答说:“你瞧瞧我的伙伴们,他们不都和我一样吗?”有一天,父亲给爱因斯坦讲了一件有趣的事情。父亲说:“昨天,我和邻居杰克大叔去清扫南边工厂的一个大烟囱。那烟囱只有踩着钢筋踏梯才烟囱内的能上去。你杰克大叔在前面,我在后面。我们抓着扶手,一阶一阶地终于爬上去了。下来时你杰克大叔依旧走在前面,我跟在后面。钻出烟囱我看见你杰克大叔的模样,心想我肯定和他一样,脸脏得像个小丑,于是我就到附近的小河里去洗了又洗。而你杰克大叔呢,他看见我钻出烟囱时乾乾净净的,就以他也和我一样干净呢,于是就只草草洗了洗手就大模大样上街了。结果街上的人都笑痛了肚子,还以你杰克大叔是个疯子呢。”父亲郑重地对爱因斯坦说:“其实,别人谁也不能做你的镜子,只有自己才是自己的镜子。拿别人做镜子,***或许会把自己照成天才的。”爱因斯坦听了,顿时满脸愧色,从此离开了那群顽皮的孩子们。他时时用自己做镜子来审视和映照自己,终于映照出了他生命的熠熠光辉.......

爱因斯坦的故事爱因斯坦AlbertEinstein(1879-1955)20世纪最伟大的物理学家。1879年3月14日爱因斯坦诞生于德国乌尔姆的一个犹太人家庭,受工程师叔父的影响,他从小受到自然科学和哲学的启蒙。1896年爱因斯坦进苏黎世工业大学师范系学习物理学,1901年获得瑞士国籍,于次年被伯尔尼瑞士专利局录用为技术员,从事发明专利申请技术鉴定工作。他利用业余时间进行科学研究,并于1905获得了历史性成就。1909年爱因斯坦离开瑞士专利局任苏黎世大学理论物理学副教授,1912年任母校苏黎世工业大学教授,1914年回德国任威廉皇帝物理学研究所所长兼柏林大学教授。法西斯政权建立后,爱因斯坦受到迫害,被迫离开德国。1933年移居美国任普林斯顿高阶研究院教授,直至1945年退休.爱因斯坦是人类历史上最具创造性才智的人物之一。他一生中开创了物理学的四个领域:狭义相对论、广义相对论、宇宙学和统一场论。他是量子理论的主要建立者之一,在分子运动论和量子统计理论等方面也做出了重大贡献。爱因斯坦于1905年发表了《论动体的电动力学》的论文,提出了狭义相对性原理和光速不变原理,建立了狭义相对论。据此他进一步得出质量和能量相当的质能公式E=mc2。狭义相对论揭示了作为物质的存在形式的空间和时间的统一性,力学运动和电磁运动学上的统一性,进一步揭示了物质和运动的统一性,为原子能的利用奠定了理论基础。1915年爱因斯坦建立了广义相对论,进一步揭示了四维空间时间物质的关系。根据广义相对论的引力论,他推断光处于引力场中不沿直线而是沿着曲线传播,1919年这种预见在英国天文学家观察日蚀中得到证实。1938年爱因斯坦在广义相对论的运动问题上获得重大进展,从场方程推汇出物体运动方程,由此进一步揭示了时空、物质、运动和引力的统一性。爱因斯坦在量子论方面做出了巨大贡献。1905年他提出能量在空间分布不是连续的假设,认为光速的能量在传播,吸收和产生过程中具有量子性,并圆满地揭示了光电效应。这是人类认识自然过程中,历史上首次揭示了辐射的波动性和粒子性的统一。1916年爱因斯坦在关于辐射的量子论的论文中,提出了受激辐射的理论,为今天的镭射技术打下了理论基础。广义相对论之后,爱因斯坦在宇宙与引力和电磁的统一场论两方面进行探索。为了证明天体在空间中静止的分布,以引力场为根据,提出了一个有限无边的静止的宇宙模型,该模型是不稳定的。从引力场方程可预见星系分离运动,后来的天文观测到这种星系分离运动。爱因斯坦爱好音乐,并自认他拉小提琴的成就要比他的物理学成就高明。1955年4月18日爱因斯坦在普林斯顿逝世,尊重他的遗嘱,不立纪念碑,不举行任何活动,骨灰撒在永远对人保密的地方。1905年11月,爱因斯坦同样在德国《物理学纪事》杂志上发表了关于狭义相对论的第二篇文章:《物体的惯性同它所包含的能量有关吗?》,这是一篇短文,在这篇论文中,他提出一个物体的质量并不是恒定不变的,而是随着运动速度的增加而增加。这就是运动中物体的“质增效应”。现在我们想象我们在推一辆小板车,板车很轻,上面什么东西也没有。假设这是一辆在真空中的“理想”板车,没有任何摩擦力、也没有任何阻力,因此只要我们持续地推它,它的速度就越来越快,但随着时间的推移,它的质量也越来越大,起初像车上堆满了钢铁,然后好像是装着一座喜马拉雅山、再然后好像是装着一个地球、一个太阳系、一个银河系……当小板车接近光速时,好像整个宇宙都装在它上面——它的质量达到无穷大。这时你无论施加多大力,无论推多长时间,它都不可能运动得再快一些。由此可见光子既然以光速传播,它的静止质量就必须等于零,否则它的运动质量就会无穷大。当物体运动接近光速时,我们不断地对物体施加外力,供给能量,可物体速度的增加越来越困难,我们施加的能量去哪儿了呢?其实能量并没有消失,而是转化为了质量。这就是说物体质量的增加与动能增加有着密切联络,或者说物体的质量与能量之间有着密切联络。爱因斯坦在说明这种联络的过程中,提出了著名的质能关系式:E=mc2。能量等于质量乘以光速的平方,即使是在不甚关心其实用价值的纯理论型的物理学家看来也是惊心动魄的,而在绝大多数人眼里,能量等于质量乘以光速的平方,即能量是质量的900万倍,是多么诱人的前景呀!指甲盖般大小的物质的质量如果完全消失,其释放的能量是用以万吨煤炭来计算的。遗憾的是没人能随便减少质量,譬如一块石头,我们尽可以用锤子砸成小块,然后碾成碎末,可是当你仔细地收集这些碎末后就会发现它的质量并未变化。但是十几年后的1939年,约里奥·居里、费米、西拉德这三位科学家分别独立发现了链式反应,使人类找到了释放巨大原子能的方法。铀235的核收到中子轰击就会发生裂变,分裂成两个中等质量的新原子核,放出1~3个中子,并释放出巨大能量,这些中子又能引发其它铀核再分裂,如此反复,形成连锁反应,不断释放巨大能量。这就是链式反应。链式反应使原子能成为杀伤力巨大的新武器。仅仅在几年后,人类第一颗原子弹在美国爆炸成功,紧接着日本人遭受了人类历史上最残酷的惩罚,几十万人死伤,其中一部分人瞬间还被原成基本粒子,真成了魂飞魄散。E=mc2在给人间带来希望之前,带来的先是致命的创伤,这一切对于深爱和平的爱因斯坦来说无疑是一记重拳,直至临死前他仍为此痛心不已。宇宙大爆炸令我们这些当代人感到惊诧的是,迟至1917年,那些人类最具智慧的大脑仍然以为我们的银河系就是整个宇宙,而这个银河系大小的宇宙永远都是稳定不变的,既不会变大也不会变小,这就是流传了千百年的稳恒态宇宙观。1917年,爱因斯坦试图根据广义相对论方程推汇出整个宇宙的模型,但他发现,在这样一个只有引力作用的模型中,宇宙不是膨胀就是收缩。为了使这个宇宙模型保持静止,爱因斯坦在他的方程里额外增加了一个新的概念——宇宙常数,它表示的是一种斥力,同引力相反,它随着天体之间距离的增大而增强。这是一个假想的、用以抵消引力作用的力。但是爱因斯坦很快发现自己错了。因为科学家们很快发现,宇宙实际上是膨胀的!最早观察到这一点的是20世纪的天文学之父哈勃。哈勃1889年出生于美国的密苏里州,毕业于芝加哥大学天文系。1929年,哈勃发现所有星系都在远离我们而去,这表明宇宙正在不断膨胀。这种膨胀是一种全空间的均匀膨胀,因此在任何一点的观测者都会看到完全一样的膨胀,从任何一个星系来看,一切星系都以它为中心向四面散开,越远的星系间彼此散开的速度越大。宇宙的膨胀意味着,在早先,星体相互之间更加靠近,并且在更遥远过去的某一刻,它们似乎在同一个很小的范围内。宇宙膨胀的讯息传到著名物理学家伽莫夫那里去的时候,立即引起了这位学者的兴趣。乔治·伽莫夫出生于俄国,自小对诗歌、几何学和物理学都深感兴趣,在大学时期成为物理学家弗里德曼的得意门生。弗里德曼曾在爱因斯坦之后提出了重要的宇宙膨胀模型,伽莫夫也成为宇宙膨胀理论的热心支援人之一。1945年,人类史上第一颗原子弹爆炸成功,看着蘑菇云升起的照片,伽莫夫突发灵感:把原子弹规模“放大”到无穷大,不就成了宇宙爆炸吗?他把核物理知识和宇宙膨胀理论结合起来,逐渐形成了自己的一套大爆炸宇宙理论体系。1948年,伽莫夫和他的学生阿尔法合写了一篇著名论文,系统地提出了宇宙起源和演化的理论。与我们惯常的想法不同,这个创生宇宙的大爆炸不是发生在一个确定的点,然后向四周的空气传播开去的那种爆炸,而是空间本身在扩充套件,星系物质随着空间的扩充套件而分开。根据大爆炸宇宙论,极早期的宇宙是一大片由微观粒子构成的均匀气体,温度极高,密度极大,且以很大的速率膨胀著。伽莫夫还作出了一个非凡的预言:我们的宇宙仍沐浴在早期高温宇宙的残余辐射中,不过温度已降到6K左右。正如一个火炉虽然不再有火了,还可以冒一点热气。1964年,美国贝尔电话公司年轻的工程师——彭齐亚斯和威尔逊,因一次偶然的机会发现了伽莫夫所预言的早期宇宙的残余辐射,经过测量和计算,得出这个残余辐射的温度是2.7K(比伽莫夫预言的温度要低),一般称为3K宇宙微波背景辐射。这一发现有力的佐证了宇宙大爆炸理论。广义相对论的智慧之处就在于,它从诞生起就能描述整个完整的宇宙,即使那些未知的领域也被全部囊括进去。让它对付像太阳系这样小小的、很普通的时空领域可真是大材小用了。宇宙常数死而复生——暗能量在发现了宇宙膨胀这个事实后,爱因斯坦就急忙忙把他方程中的宇宙常数项去掉了,并认为宇宙常数是他“一生中最大的错误”。随后宇宙常数被抛进历史的垃圾堆。但是造化弄人,几十年后,宇宙常数又像鬼魂般的复活了。这次宇宙常数的复活要归因于暗能量的发现。1998年,天文学家们发现,宇宙不只是在膨胀,而且在以前所未有的加速度向外扩张,所有遥远的星系远离我们的速度越来越快。那么一定有某种隐藏的力量在暗中把星系相互以加速膨胀的方式撕扯开来,这是一种具有排斥力的能量,科学家们把它称为“暗能量”。近年来科学家们通过各种的观测和计算证实,暗能量不仅存在,而且在宇宙中占主导地位,它的总量约达到宇宙总量的73%,而宇宙中的暗物质约占23%、普通物质仅约占4%。我们一直以为满天繁星就已经够多了,宇宙中还有什么能比得上它们呢?而现在,我们才发现这满天繁星却是“弱势群体”,剩下的绝大部分都是我们知之甚少或干脆一无所知的,这怎么不让人感到惊心动魄呢!事实上,早在1930年,就有天体物理学家指出,爱因斯坦那加入了宇宙常数的宇宙学方程并不能汇出完全静态的宇宙:因为引力和宇宙常数是不稳定的平衡,一个小小的扰动就能导致宇宙失控的膨胀和收缩。而暗能量的发现告诉我们,爱因斯坦那作为与引力相抗衡的宇宙常数不仅确确实实存在,而且大大扰动了我们的宇宙,使宇宙的膨胀速率严重失控。在经历了一系列曲折后,宇宙常数正在时间中复活。宇宙常数今日以暗能量的面目出现在世人面前,它所产生的汹涌澎湃的排斥力已令整个宇宙为之变色!暗能量和引力之间的角力战自宇宙诞生起就没有停止过,在这场漫长的战斗中,最举足轻重的就是彼此的密度。物质的密度随着宇宙膨胀导致的空间增大而递减;但暗能量的密度在宇宙膨胀时,变化得非常缓慢,或者根本保持不变。在很久以前物质的密度是较大的,因此那时的宇宙是处于减速膨胀的阶段;现今的暗能量密度已经大于物质的密度,排斥力已经从引力手中彻底夺得了控制权,以前所未有的速度推动宇宙膨胀。根据一些科学家的预测,再过200多亿年,宇宙将迎来动荡的末日,恐怖的暗能量终将把所有的星系、恒星、行星一一撕裂,宇宙将只剩下没有尽头的寒冷、黑暗。暗能量的发现,也充分地体现了人类认知过程又走进了一个“悖论怪圈”:即宇宙中所占比例最多的,反而是最迟也是最难为我们所知晓的。一方面人类现在对宇宙奥秘的了解越来越多,另一方面我们所要面对的未知也越来越多。而这日益深远的未知又反过来不断***着人类去探索宇宙背后的真相。暗能量是怎么来的?它将如何发展?这已经是21世纪宇宙学所面临的最重大问题之一。黑洞大发现广义相对论表明,引力场可以造成空间弯曲,强大的引力场可以造成强烈的空间弯曲,那么无限强大的引力场会产生什么情况呢?1916年爱因斯坦发表广义相对论后不久,德国物理学家卡尔·史瓦西就用这个理论描绘了一个假设的完全球状星体附近的空间和时间是如何弯曲的。他证明假如星体质量聚集到一个足够小的球状区域里,比如一个天体的质量与太阳相同,而半径只有3公里时,引力的强烈挤压会使那个天体的密度无限增大,然后产生灾难性的坍塌,使那里的时空变得无限弯曲,在这样的时空中,连光都不能逃逸!由于没有了光讯号的联络,这个时空就与外面的时空分割成两个性质不同的区域,那个分割球面就是视界。这就是我们今天耳熟能详的黑洞,但在那个年代,几乎没有人相信有这么奇怪的天体存在,甚至包括爱因斯坦本人和爱丁顿这样的相对论大师也明确表示反对这种怪物,爱因斯坦还说他可以证明没有任何星体可以达到密度无限大。就连黑洞这个名称也是一直到1967年才由美国物理学家惠勒命名。历史当然不会因此而停止前进,时间进入20世纪30年代,美国天文学家钱德拉塞卡提出了著名的“钱德拉塞卡极限”,即:一颗恒星当其氢核燃尽后的质量是太阳质量的1.44倍以上时,将不可能变成白矮星,而会继续坍塌收缩,变成体积比白矮星更小、密度比白矮星更大的星体,即中子星。1939年,美国物理学家奥本海默进一步证明,一颗恒星当其氢核燃尽后的质量是太阳质量的3倍以上时,其自身引力的作用将能使光线都不能逃出这个星体的范围。随着经验的积累,关于黑洞的理论变得成熟起来,人们从彻底拒绝这个怪物到渐渐相信它,到20世纪60年代,人们已普遍接受黑洞的概念,黑洞的奥秘被逐渐研究出来。严格而言黑洞并不是通常意义下的“星”,而只是空间的一个区域。这是与我们日常宇宙空间互不连通的区域,黑洞视界将这两个区域隔绝开,在视界以外,可以由光讯号在任意距离上相互联络,这就是我们所居住的正常宇宙;而在视界以内,光线并不能自由地从一个地方传播到另一个地方,而是都朝向中心集聚,事件之间的联络受到严格限制,这就是黑洞。在黑洞的内部,物体向黑洞坠落的过程中,潮汐力越来越大,在中心区域,引力和起潮力都是无限大。因此在黑洞中心,除了质量、电荷和角动量以外,物质其他特性全部丧失,原子、分子等等都将不复存在!在这种情形下,无法谈论黑洞的哪一部分物质,黑洞是一个统一体!在黑洞中心,全部物质被极为紧密地挤压成为一个体积无限趋近于零的几何点,任何强大的力量都不可能把它们分开,这就是所谓的“奇点”状态。广义相对论无法对此进行考察,而必须代之以新的正确理论——量子理论。讽刺的是广义相对论给我们汇出了一个黑洞,却在黑洞的奇点之处失效,量子理论取而代之,而量子理论和相对论却根本互不相容!

爱因斯坦的故事——一件旧大衣一天,爱因斯坦在纽约的街道上遇见一位朋友。“爱因斯坦先生,”这位朋友说,“你似乎有必要要添置一件新大衣了。瞧你身上这件多旧啊!”“这有什么关系?反正在纽约谁也不认识我。”爱因斯坦无所谓地说。几年后他们又偶然相遇。这时爱因斯坦已经誉满天下,却还是穿着那件旧大衣。他的朋友又建议他去买一件新大衣。“这又何必呢?”爱因斯坦说,“反正这儿已经每个人都认识我了。”采纳啊~~~

展开全文

热门推荐

相关攻略

猜你喜欢